34 research outputs found

    HyP-DESPOT: A Hybrid Parallel Algorithm for Online Planning under Uncertainty

    Full text link
    Planning under uncertainty is critical for robust robot performance in uncertain, dynamic environments, but it incurs high computational cost. State-of-the-art online search algorithms, such as DESPOT, have vastly improved the computational efficiency of planning under uncertainty and made it a valuable tool for robotics in practice. This work takes one step further by leveraging both CPU and GPU parallelization in order to achieve near real-time online planning performance for complex tasks with large state, action, and observation spaces. Specifically, we propose Hybrid Parallel DESPOT (HyP-DESPOT), a massively parallel online planning algorithm that integrates CPU and GPU parallelism in a multi-level scheme. It performs parallel DESPOT tree search by simultaneously traversing multiple independent paths using multi-core CPUs and performs parallel Monte-Carlo simulations at the leaf nodes of the search tree using GPUs. Experimental results show that HyP-DESPOT speeds up online planning by up to several hundred times, compared with the original DESPOT algorithm, in several challenging robotic tasks in simulation

    Analysis of an Impulsive One-Predator and Two-Prey System with Stage-Structure and Generalized Functional Response

    Get PDF
    An impulsive one-predator and two-prey system with stage-structure and generalized functional response is proposed and analyzed. By reasonable assumption and theoretical analysis, we obtain conditions for the existence and global attractivity of the predator-extinction periodic solution. Sufficient conditions for the permanence of this system are established via impulsive differential comparison theorem. Furthermore, abundant results of numerical simulations are given by choosing two different and concrete functional responses, which indicate that impulsive effects, stage-structure, and functional responses are vital to the dynamical properties of this system. Finally, the biological meanings of the main results and some control strategies are given

    Myeloid Cell-Derived Reactive Oxygen Species Externally Regulate the Proliferation of Myeloid Progenitors in Emergency Granulopoiesis

    Get PDF
    SummaryThe cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1+ myeloid cells were uniformly distributed in the BM, and all c-kit+ progenitor cells were adjacent to Gr1+ myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in upregulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection
    corecore